Nature

CRISPR screens unveil signal hubs for nutrient licensing of T cell immunity

  • 1.

    Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Kim, J. & Guan, K. L. mTOR as a central hub of nutrient signalling and cell growth. Nat. Cell Biol. 21, 63–71 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Huang, H., Long, L., Zhou, P., Chapman, N. M. & Chi, H. mTOR signaling at the crossroads of environmental signals and T-cell fate decisions. Immunol. Rev. 295, 15–38 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Shi, H. et al. Amino acids license kinase mTORC1 activity and Treg cell function via small G proteins Rag and Rheb. Immunity 51, 1012–1027 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Yang, K. et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor–mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Tan, H. et al. Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity 46, 488–503 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Bai, B. et al. Deep multilayer brain proteomics identifies molecular networks in Alzheimer’s disease progression. Neuron 105, 975–991 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Loo, C. S. et al. A genome-wide CRISPR screen reveals a role for the non-canonical nucleosome-remodeling BAF complex in FOXP3 expression and regulatory T cell function. Immunity 53, 143–157 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Tang, B. L. et al. Mammalian homologues of yeast sec31p. An ubiquitously expressed form is localized to endoplasmic reticulum (ER) exit sites and is essential for ER–Golgi transport. J. Biol. Chem. 275, 13597–13604 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Zeng, H. et al. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499, 485–490 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Zhou, P. Determining protein half-lives. Methods Mol. Biol. 284, 67–77 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Shi, H. et al. Hippo kinases Mst1 and Mst2 sense and amplify IL-2R–STAT5 signaling in regulatory T cells to establish stable regulatory activity. Immunity 49, 899–914 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Skaar, J. R., Pagan, J. K. & Pagano, M. SCF ubiquitin ligase-targeted therapies. Nat. Rev. Drug Discov. 13, 889–903 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Cortez, J. T. et al. CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature 582, 416–420 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Yang, K., Neale, G., Green, D. R., He, W. & Chi, H. The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat. Immunol. 12, 888–897 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Wei, J. et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol. 17, 277–285 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Sakaguchi, S. et al. Regulatory T cells and human disease. Annu. Rev. Immunol. 38, 541–566 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Overacre-Delgoffe, A. E. et al. Interferon-γ drives Treg fragility to promote anti-tumor immunity. Cell 169, 1130–1141 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Su, W. et al. Protein prenylation drives discrete signaling programs for the differentiation and maintenance of effector Treg cells. Cell Metab. 32, 996–1011 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Lee, P. P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Oxenius, A., Bachmann, M. F., Zinkernagel, R. M. & Hengartner, H. Virus-specific MHC-class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. Eur. J. Immunol. 28, 390–400 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Wei, J. et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Huang, H. et al. In vivo CRISPR screening reveals nutrient signaling processes underpinning CD8+ T cell fate decisions. Cell 184, 1245–1261 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Fu, G. et al. Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine. Nature 595, 724–729 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Zeng, H. et al. mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity 45, 540–554 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Chen, R. et al. In vivo RNA interference screens identify regulators of antiviral CD4+ and CD8+ T cell differentiation. Immunity 41, 325–338 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Parnas, O. et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162, 675–686 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Yu, J., Silva, J. & Califano, A. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling. Bioinformatics 32, 260–267 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Joung, J. et al. Genome-scale CRISPR–Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Karmaus, P. W. F. et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature 565, 101–105 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Li, Z. et al. Identification of transcription factor binding sites using ATAC-seq. Genome Biol. 20, 45 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Lim, S. A. et al. Lipid signalling enforces functional specialization of Treg cells in tumours. Nature 591, 306–311 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

  • 42.

    Butler, A., Hoffman, P., Smibert, P., Papalexi, E., Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

  • 43.

    Collison, L. W. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450, 566–569 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Stewart, E. et al. Identification of therapeutic targets in rhabdomyosarcoma through integrated genomic, epigenomic, and proteomic analyses. Cancer Cell 34, 411–426 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Lim, K. L. et al. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J. Neurosci. 25, 2002–2009 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Wang, H. et al. Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes. Nat. Commun. 10, 3718 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Wang, H. et al. Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease. Mol. Neurodegenertion 15, 43 (2020).

    CAS 

    Google Scholar
     

  • 49.

    Wang, X. et al. JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy. Mol. Cell. Proteomics 13, 3663–3673 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Li, Y. et al. JUMPg: an integrative proteogenomics pipeline identifying unannotated proteins in human brain and cancer cells. J. Proteome Res. 15, 2309–2320 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat. Methods 10, 730–736 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Szklarczyk, D. et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Huttlin, E. L. et al. The BioPlex Network: a systematic exploration of the human interactome. Cell 162, 425–440 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Li, T. et al. A scored human protein–protein interaction network to catalyze genomic interpretation. Nat. Methods 14, 61–64 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Bader, G. D. & Hogue, C. W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Morris, J. H. et al. clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics 12, 436 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    Google’s pursuit of military cloud deal was among top issues at last week’s all-staff meeting
    Contrarian call suggests consumers are in trouble this holiday season
    Kiribati Opens One of the Largest Protected Areas in the World to Commercial Fishing
    Terraforming: Can We Turn Mars Into Earth 2.0?
    What People Get Wrong About Schizophrenia

    Leave a Reply

    Your email address will not be published. Required fields are marked *