Nature

Movement is governed by rotational neural dynamics in spinal motor networks

  • Grillner, S. & El Manira, A. Current principles of motor control, with special reference to vertebrate locomotion. Physiol. Rev. 100, 271–320 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • McCrea, D. A. & Rybak, I. A. Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 57, 134–146 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Arber, S. & Costa, R. M. Connecting neuronal circuits for movement. Science 360, 1403–1404 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gosgnach, S. et al. Delineating the diversity of spinal interneurons in locomotor circuits. J. Neurosci. 37, 10835–10841 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goulding, M. Circuits controlling vertebrate locomotion: moving in a new direction. Nat. Rev. Neurosci. 10, 507–518 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stein, P. S. G. & Daniels-McQueen, S. Modular organization of turtle spinal interneurons during normal and deletion fictive rostral scratching. J. Neurosci. 22, 6800–6809 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Petersen, P. C. & Berg, R. W. Lognormal firing rate distribution reveals prominent fluctuation-driven regime in spinal motor networks. eLife 5, e18805 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Radosevic, M. et al. Decoupling of timescales reveals sparse convergent CPG network in the adult spinal cord. Nat. Commun. 10, 2937 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Russo, A. A. et al. Motor cortex embeds muscle-like commands in an untangled population response. Neuron 97, 953–966 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sussillo, D. et al. A neural network that finds a naturalistic solution for the production of muscle activity. Nat. Neurosci. 18, 1025–1033 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bruno, A. M. et al. A spiral attractor network drives locomotion in Aplysia. eLife 6, e27342 (2017).

  • Berkinblit, M. B. et al. Generation of scratching. I. Activity of spinal interneurons during scratching. J. Neurophysiol. 41, 1040–1057 (1978).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Auyong, N. et al. Preferred locomotor phase of activity of lumbar interneurons during air-stepping in subchronic spinal cats. J. Neurophysiol. 106, 1943–1953 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kwan, A. C. et al. Spatiotemporal dynamics of rhythmic spinal interneurons measured with two-photon calcium imaging and coherence analysis. J. Neurophysiol. 104, 3323–3333 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kiehn, O. et al. Excitatory components of the mammalian locomotor CPG. Brain Res. Rev. 57, 56–63 (2008).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Rancic, V. & Gosgnach, S. Recent insights into the rhythmogenic core of the locomotor CPG. Int. J. Mol. Sci. 22, 1394 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dayan, P. & Abbott, L. F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT Press, 2001).

  • Hennequin, G., Agnes, E. J. & Vogels, T. P. Inhibitory plasticity: balance, control, and codependence. Annu. Rev. Neurosci. 40, 557–579 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Berg, R. W., Willumsen, A. & Lindén, H. When networks walk a fine line: balance of excitation and inhibition in spinal motor circuits. Curr. Opin. Physiol. 8, 76–83 (2019).

    Article 

    Google Scholar
     

  • Berg, R. W., Alaburda, A. & Hounsgaard, J. Balanced inhibition and excitation drive spike activity in spinal half-centers. Science 315, 390–393 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Machado, T. A. Probing Circuits for Spinal Motor Control. PhD thesis, Columbia Univ. (2015).

  • Ramirez, J.-M. & Baertsch, N. A. The dynamic basis of respiratory rhythm generation: one breath at a time. Annu. Rev. Neurosci. 41, 475–499 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rajan, K., Abbott, L. F. & Sompolinsky, H. Stimulus-dependent suppression of chaos in recurrent neural networks. Phys. Rev. E 82, 011903 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Hennequin, G., Vogels, T. P. & Gerstner, W. Optimal control of transient dynamics in balanced networks supports generation of complex movements. Neuron 82, 1394–1406 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Beiran, M. & Ostojic, S. Contrasting the effects of adaptation and synaptic filtering on the timescales of dynamics in recurrent networks. PLoS Comput. Biol. 15, e1006893 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stroud, J. P., Porter, M. A., Hennequin, G. & Vogels, T. P. Motor primitives in space and time via targeted gain modulation in cortical networks. Nat. Neurosci. 21, 1774–1783 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gosgnach, S. et al. V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 440, 215–219 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Callahan, R. A. et al. Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control. eLife 8, e47837 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Berkowitz, A. et al. Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles. Front. Behav. Neurosci. 4, 36 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briggman, K. L. & Kristan, W. B. Multifunctional pattern-generating circuits. Annu. Rev. Neurosci. 31, 271–294 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sussillo, D. & Abbott, L. F. Generating coherent patterns of activity from chaotic neural networks. Neuron 63, 544–557 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Logiaco, L., Abbott, L. & Escola, S. Thalamic control of cortical dynamics in a model of flexible motor sequencing. Cell Rep. 35, 109090 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mortin, L. I., Keifer, J. & Stein, P. S. Three forms of the scratch reflex in the spinal turtle: movement analyses. J. Neurophysiol. 53, 1501–1516 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Elsayed, G. F., Lara, A. H., Kaufman, M. T., Churchland, M. M. & Cunningham, J. P. Reorganization between preparatory and movement population responses in motor cortex. Nat. Commun. 7, 13239 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, S. A. Neural manifolds for the control of movement. Neuron 94, 978–984 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aljadeff, J., Stern, M. & Sharpee, T. Transition to chaos in random networks with cell-type-specific connectivity. Phys. Rev. Lett. 114, 088101 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bikoff, J. B. et al. Spinal inhibitory interneuron diversity delineates variant motor microcircuits. Cell 165, 207–219 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Levine, A. J. et al. Identification of a cellular node for motor control pathways. Nat. Neurosci. 17, 586–593 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Berg, R. W. in The Neural Control of Movement (eds Whelan, P. J. & Sharples, S. A.) 205–219 (Elsevier, 2020).

  • Walloe, S. et al. Stereological estimate of the total number of neurons in spinal segment D9 of the red-eared turtle. J. Neurosci. 31, 2431–2435 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bannatyne, B. A. et al. Neurotransmitters and motoneuron contacts of multifunctional and behaviorally specialized turtle spinal cord interneurons. J. Neurosci. 40, 2680–2694 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stein, P. S. G. Central pattern generators in the turtle spinal cord: selection among the forms of motor behaviors. J. Neurophysiol. 119, 422–440 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Kadir, S. N. et al. High-dimensional cluster analysis with the masked EM algorithm. Neural Comput. 26, 2379–2394 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Berg, R. W. et al. Exploratory whisking by rat is not phase locked to the hippocampal theta rhythm. J. Neurosci. 26, 6518–6522 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Percival, D. B. & Walden, A. T. Spectral Analysis for Physical Applications – Multitaper and Conventional Univariate Techniques (Cambridge Univ. Press, 1998)

  • Bonizzato, M. et al. Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury. Nat. Commun. 12, 1925 (2021).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Serruya, M. D. et al. Instant neural control of a movement signal. Nature 416, 141–142 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dougherty, K. J. & Ha, N. T. The rhythm section: an update on spinal interneurons setting the beat for mammalian locomotion. Curr. Opin. Physiol. 8, 84–93 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lafreniere-Roula, M. & McCrea, D. A. Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. J. Neurophysiol. 94, 1120–1132 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Zhong, G. et al. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization. J. Physiol. 590, 4735–4759 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Suresh, A. K. et al. Neural population dynamics in motor cortex are different for reach and grasp. eLife 9, e58848 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vogels, T. P. & Abbott, L. F. Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nat. Neurosci. 12, 483–491 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kanaka, R. & Abbott, L. F. Eigenvalue spectra of random matrices for neural networks. Phys. Rev. Lett. 97, 188104 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Mardia, K. V. & Jupp, P. E. Directional Statistics (Wiley, 2000).

  • Products You May Like

    Leave a Reply

    Your email address will not be published.